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Abstract

Animating digital characters has an important role in com-
puter assisted experiences, from video games to movies to
interactive robotics. A critical challenge in the field is to gen-
erate animations which accurately reflect the state of the an-
imated characters, without looking repetitive or unnatural. In
this work, we investigate the problem of procedurally gen-
erating a diverse variety of facial animations that express a
given semantic quality (e.g., very happy). To that end, we
introduce a new learning heuristic called Precision Variety
Learning (PVL) which actively identifies and exploits the
fundamental trade-off between precision (how accurate pos-
itive labels are) and variety (how diverse the set of positive
labels is). We both identify conditions where important theo-
retical properties can be guaranteed, and show good empiri-
cal performance in variety of conditions. Lastly, we apply our
PVL heuristic to our motivating problem of generating smile
animations, and perform several user studies to validate the
ability of our method to produce a perceptually diverse vari-
ety of smiles for different target intensities.

Introduction

Virtual humans are increasingly a part of our games and
other digital media. They appear in movies as animated ac-
tors, video games as interactive non-player characters, per-
sonal avatars in games, virtual reality and social media, and
are even used to control human-like robots. A critical com-
ponent of creating compelling interactions with digital char-
acters is the animation of the human face. Humans use and
expect faces to produce a variety of cues for nonverbal com-
munication such as intonation and emotion. Understanding
the full variety of movements that control and effect these
cues is important both to fields that study real humans (e.g.,
medicine and psychology) as well as those which seek to
create realistic virtual characters (e.g., games and movies).

Our goal in this work is to create algorithms that can au-
tomatically generate a variety realistic animations for virtual
characters, a problem which is closely related to a field of AI
known as Procedural Content Generation (PCG). PCG is es-
pecially relevant in the realm of games and interactive digital
entertainment where is it important to present the user with
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engaging, dynamic experiences that respond to the user’s ac-
tions in real time.

For procedurally animated virtual characters to meet their
goal of emotionally engaging the users, there are two im-
portant qualities the procedural animations must maintain.
Firstly, it is important that their expressions are as high qual-
ity and natural in appearance as possible. If the generated
motion is halting, confusing, or otherwise unrealistic in its
execution, the users will be distracted from the intended
emotional content of the expression. Secondly, the procedu-
ral generation system must be able to create a variety of mo-
tions that is reflective of the full diversity real people have
in showing the same basic expression. In fact, the impor-
tance of variety in character animations has been established
through multiple users studies (McDonnell et al. 2008;
O’Sullivan 2009) and has been highlighted as an important
challenge in PCG (Preuss, Liapis, and Togelius 2014).

Unfortunately, these dual goals of generating high qual-
ity content and generating a diverse variety of content are
often in direct conflict. Algorithms that focus too much on
the quality of their content often do so by sacrificing the
variety of their output. In this paper, we examine this trade-
off in the context of procedural systems for creating mouth
movements for virtual characters to form smiles of different
intensity (e.g., slight, full, none), and propose new methods
to produce a broad diversity of smiles that accurately dis-
play the target intensity level. Our work presents three main
contributions:

• Formalization and analysis of quality-variety trade-off :
We formally define the notions of quality and variety for
a certain class of content generation models (constraint-
based optimization formulations), and explore the theo-
retical basis of the inherent trade-offs between the two.

• Precision Variety Learning heuristic (PVL): We introduce
a framework for a constraint-based optimization formula-
tions of PCG which allows a user to tune the level of pre-
cision needed for a specific application, and automatically
maximize its variety of procedurally generated content for
a given level of precision.

• Variety-Enhanced, Data-driven Facial Animation Sys-
tem: We apply our PVL generation approach to a non-
parametric classifier trained on a recently published set of
smile animation data (Helwig et al. 2017) in order to cre-



Figure 1: A variety of happy, smiling mouth shapes generated by our method, rendered in a high-quality real-time engine.

ate a system capable of producing a large variety of smiles
at a given level of smile intensity. We evaluate the quality
and diversity of the resulting smiles through user studies.

While the results presented here focus on PCG smiles
(e.g., see Figure 1), the approach is generic and can be di-
rectly applied both to other facial expressions (e.g, sad, an-
gry), and to other forms of procedurally generated content.

Background

The animation of digital human-like faces has a rich his-
tory in the literature, from performance capture to model-
ing, to human perception of facial actions, and creating fa-
cial expressions for digital characters. Likewise, the study
of PCG is a quickly growing field, covering everything from
game maps and mechanics to textures and audio (Hendrikx
et al. 2013). Below, we briefly highlight some closely related
works.

Facial Animation

There is a rich literature surrounding the task of facial an-
imation, an overview of which can be found in (Vinayag-
amoorthy et al. 2006). The most common technique is the
use of a 3D spatial mesh that is then manipulated according
to some model of facial movement. As with the models we
employ here, many models of natural facial deformations
are based on interpolative blendshapes (Zhang et al. 2016;
Bouaziz, Wang, and Pauly 2013; Li et al. 2013; Xu et al.
2014). Blendshape-based models involve linearly interpolat-
ing the mesh between a set of exemplar configurations.

In many cases, the approach to animating these models
utilize the capture of a facial performance by a human actor.
Researchers have proposed various methods to accomplish
this, from adaptive dimensionality reduction (Li et al. 2013),
to neural networks (Costigan, Prasad, and McDonnell 2014)
to local patch alignment (Zhang et al. 2016), and generating
blendshape segmentation schemes (Joshi et al. 2005).

Generative methods for digital character facial expres-
sions have also recently been explored. Some generate fa-
cial expressions from dialogue audio and text transcripts
(Marsella et al. 2013). Physically-based models of the face
can also be used to synthesize facial animation, such as
speech (Sifakis et al. 2006).

Researchers have employed user studies to evaluate the
effectiveness of digital character animation (Kokkinara and
McDonnell 2015; McDonnell 2012; Liu et al. 2016), as well

as to study the impact of variety (McDonnell et al. 2008;
O’Sullivan 2009).

Machine Learning for Facial Analysis

Supervised learning is the most closely related area of ma-
chine learning to our work, surveyed in (Kotsiantis, Za-
harakis, and Pintelas 2007). Others have developed special-
ized algorithms to recognize faces and facial actions (Pan-
tic and Rothkrantz 2000; Franco and Treves 2001; Bartlett
et al. 2005), as well as recognizing emotions (Michel and
El Kaliouby 2003).

PCG as Machine Learning

There are many PCG techniques, and some synopses of the
field are given in (Smith 2014; Hendrikx et al. 2013). Recent
works have considered how to create engaging (Togelius et
al. 2013), diverse (Liapis, Yannakakis, and Togelius 2015),
and interactive (Yannakakis and Togelius 2011; Smith 2014)
content. Machine learning techniques can be applied to PCG
problems in different ways, as content evaluators or to gen-
erate content directly (Summerville et al. 2017; Togelius et
al. 2011).

Diverse, High-Quality Content

Quality-Diversity algorithms have recently been identified
as an important type of algorithm, with search-based ap-
proaches like evolutionary algorithms (Pugh et al. 2015)
and Human-in-the-loop methods that combine user input
with search to efficiently traverse search spaces (Mouret
and Clune 2015) showing promise in this area. To the au-
thors’ knowledge, this work is the first to propose a machine-
learning-based approach for this class of algorithms.

Problem Definition

As a motivating context for our problem formulation, con-
sider the task of creating a 3D role-playing style game
(RPG) where the player is immersed in an open world,
free to explore and interact with many non-player charac-
ters (NPCs). To keep the NPCs engaging, their behaviors
should be both appropriate to context (e.g., convey the right
emotion), and appear natural and lifelike (i.e., not mechani-
cally repetitious or robotic). To do this, we must be able to
produce facial movements that exhibit the desired semantic
meaning, while capturing the diversity of motion seen in real
human faces, both within and across individuals. With these



two goals as our primary focus, we can establish a formal
definition of our problem.

We will represent facial animations as parameterized into
a feature space F , so that x ∈ F represents a complete fa-
cial motion, and define S to be the set of semantic labels.
Let us also define a function D : X ⊆ F 7→ R that op-
erates on a set of faces to measure its diversity, and a func-
tion Qs : X ⊆ F 7→ R as the quality of a set. Finally, let
Cs : F 7→ {0, 1} be a binary function that identifies whether
or not a given animation exhibits a target semantic label s.
Then, given some target s ∈ S , our task is to find the set
of faces exhibiting the desired semantic that maximizes the
diversity and quality functions:

argmax
Cs

[

Qs(X), D(X) : ∀x ∈ X
(

Cs(x) = 1
)]

. (1)

This equation represents a multi-objective optimization
problem. To develop a solution for our domain of facial ani-
mations, we must establish quantifiable definitions of Q and
D, identify an appropriate feature space for F , and learn
C. The remainder of this section describes our approach to
each, followed by our proposed method for actually gener-
ating animations.

Measuring Quality & Diversity

We note that from here on we will assume X to be a finite
set that is representative of C’s continuous positive decision
region in feature space. Then we define the Quality Q(X) as
the percentage of x ∈ X that are true members of the target
class:

Qs(X) =
|{x ∈ X : [C∗

s (x) = 1]}|

|{X}|
. (2)

Where C∗
s is the true semantic label function. In the con-

text of equation 1, this is equivalent to the precision of the
classifier D, which is how we will measure Q.

To measure the diversity of a set X , we will take its car-
dinality. This approach is consistent with existing measures
of diversity for finite sets of candidate samples proposed in
PCG (Preuss, Liapis, and Togelius 2014). Formally,

D(X) = |{X}|. (3)

An important property for D is that adding members to X
can never decrease the diversity measure overall (other rea-
sonable diversity metrics, such as the variance of the set, do
not satisfy this property).

Feature Space (F )

Along with their study, Helwig et al. proposed a generaliz-
able, low-dimensional feature space to be used to represent
smile animations. We refer to this feature space as facial
space, and adopt it for F . This feature space is composed
of distances between key points surrounding the mouth as
identified by medical professionals including: angle, extent,
and dental show. Angle is computed as the angle between
the bottom lip and mouth corner, extent is the width of the
smile, and dental show is the separation between the upper
and lower lips.
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Figure 2: Training Data (a) A visual summary of the se-
mantic classes. (b) Sample counts by class.

Classifier (C)

By definition, the task for C is one of classification. To do
this, we will construct binary classifiers from annotated data
via supervised learning that maps samples to a member-
ship prediction given a target class in S . Our formulation
allows for any binary classifier, though different classifiers
will have different theoretical properties and performance.
Here, we consider several well established classifiers:

• Nearest Neighbor models (KNNs): We employ a variant
of KNN known as Restricted Neighborhood Search. The
prediction for a sample is positive if a sufficient number of
nearby neighbors (called witnesses) within some distance
r are positive. The prediction for a query sample q ∈ F is
positive if and only if

∑

x∈Wq

π(x)

|Wq|
≥ t ∧ |Wq| ≥ k, (4)

whereWq is the set of witnesses for q, t is the minimum
proportion of witnesses that must be positive, k is the min-
imum number of witnesses to make a prediction, and π(x)
takes the value 1 if x is a positive training sample and 0
otherwise. For our classifier, we choose k = 6 based off
the density of our training data, r = 0.4 based on the dis-
tribution of inter-point distances, and t = 0.3 via tuning.

• Support Vector Machines (SVMs): these classifiers use
quadratic programming to find a linear separator between
positive and negative samples that maximizes the margin
between them. A key property of SVMs is their use of
kernels, which transform training data into higher dimen-
sional spaces (where linear separators are more likely to
be found) before measuring distances via an inner prod-
uct. In this way, learning can take place in a high dimen-
sional space while computation stays in a low dimensional
space. Here, we employ the kernlab SVM package (Karat-
zoglou et al. 2004) for the R programming language, us-
ing the ”vanilla” kernel.

• Random Forests (RFs): these classifiers take many ran-
dom subsets of the training data and build decision trees
on each. For prediction, a majority vote is taken of the
random decision trees on the query sample, combating
the tendency of decision trees to over-fit. Here, we em-
ploy the randomForest package for the R programming
language (Liaw and Wiener 2002) with 1000 trees.





Algorithm 1: PVL Prediction

Input : sample, trainData, pClass,m
Output: prediction
pos← getPositiveSamples(trainData, pClass);
neg ← getNegativeSamples(trainData, pClass);
pos← sortByDistanceToNearest(pos, neg);
pos← getfirstNSamples(positive,m);
trainData← union(positive, negative);
prediction← getPrediction(trainData, sample);
return(prediction);

to maximize variety in positively classified faces while re-
taining as much precision as possible.

Precision Variety Learning

The key insight which enables our approach is that high
precision can be ensured by carefully selecting which posi-
tive samples are allowed in to the training set. For example,
choosing to only include positive training samples that are
far away from negative samples can increase the precision
of the model at the cost of false negatives, which is a fa-
vorable trade given our goals. However, including too few
positive training samples results in very little variety, which
is an equally important objective. Varying the positive sam-
ples allowed into the training set exposes this trade-off for
tuning between precision and variety.

To that end, we introduce a parameter m that controls
what samples are used in the training set for a binary classi-
fier (e.g, KNN). The training set is constructed by a heuris-
tic ordering of the positive training set by sample precision.
To define sample precision, we look at the subregion of the
positive decision region that is added by a sample given an
existing classifier. Sample precision is taken to be the pro-
portion of this new region that overlaps the true positive
region of the feature space. Figure 4 illustrates the regions
involved and how they are used. Importantly, sample pre-
cision considers only the additional positive decision area
supported by the new training sample. When samples are ar-
ranged such that sample precision is decreasing, we say they
are in precision-optimal order. The first m positive train-
ing samples (i.e., with the m highest sample precisions), to-
gether with all of negative training samples are provided as
input the the binary classifier. For all m, all negative train-
ing samples are included as they do not increase the risk of
generating a false positive. We call the resulting approach
Precision-Variety Learning (PVL), and the algorithm is pre-
sented in Algorithm 1.

Unfortunately, a positive training sample’s sample preci-
sion cannot be computed directly as it depends on the order-
ing of the points added to the classifier before it. We there-
fore propose an order-independent estimation of sample pre-
cision as the distance of a given positive training sample to
its nearest negative neighbors. Intuitively, this heuristic cap-
tures the fact that false positives (which reduce precision) are
likely to lie near negative training samples. This assumption
is explored further in the following section.

The key feature of m is the way in which it captures and
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Figure 4: Sample Precision Conceptual regions when
adding a positive sample into the training set are depicted
and labeled. We define sample precision as the ratio of area
B to area A. The precision of the existing classifier is the
ratio |C ∪ E|/|C ∪ E ∪ D ∪ F|, and the precision of the
resulting classifier is |B∪C∪E|/|B∪C∪E∪A∪C∪F|

exposes the trade-off between precision and variety. This
is our solution to the multi-objective optimization problem
posed in equation 1. Like the pareto-fronts used in many so-
lutions to multi-objective problems, m exposes a precision-
variety front that can be exploited to gain as much variety
as possible for a desired level of precision. While we do not
claim that m generates a pareto-optimal front, we can iden-
tify conditions that guarantee the monotonicity of the front,
which m is designed to produce. A critical property of pareto
fronts, monotonicity insures that any loss of one objective
does not allow the loss of the other (e.g, giving up precision
will either maintain or increase variety). This also enables a
directed search for optimizing m given a desired precision
or variety.

In the case of a neighbor based classifier such as KNN
with a precision-optimal ordering of positive training sam-
ples, the resulting trade-off front is provably monotonic in
m under some supporting assumptions. By monotonicity we
mean for increasing m, variety does not decrease and preci-
sion does not increase, and vice versa for decreasing m. To
prove this, it is sufficient to show that as m increases, we
have non-increasing precision and non-decreasing variety.
Our formal arguments for each are as follows.

Proof of Monotonicity

When used with a neighbor-based classifier (such as KNN),
there are several key theoretical properties which are main-
tained by using the PVL approach, which we demonstrate
below. The first is that, under certain conditions of the under-
lying data, the precision of the classifier decreases monoton-
ically as m increases. We also show, regardless of the quality
of data, both that specificity (the rate of true negatives) de-
creases monotonically and variety increases monotonically.
Taken together, this means as m increases our predictions
will have more inaccuracies (both in terms of admitting false
positives and rejecting true negatives), but will increase va-
riety; this serves as the theoretical bases for our claim that
PVL is navigating a trade-off between the quality of proce-
durally generated content and its variety.



Definition 1: Quality of Approximation. We define the
quality of approximation of our heuristic for a given dataset
as the degree to which our distance-based ordering main-
tains a precision-optimal ordering. The quality of approxi-
mation will be high when two conditions hold: 1) the data
has a clear positive decision boundary (i.e., samples are
more homogeneous the further they are from the bound-
ary) and 2) the boundary has limited curvature. Because our
heuristic ordering first adds points that are far away from
negative samples, the existence of a clear decision boundary
ensures initial points will contribute new positive classifica-
tion area with higher precision than later points which are
closer to the boundary. Assuming limited curvature allows
us to safely approximate the distance to the decision bound-
ary as the distance to the single nearest negative sample.

Theorem 1: Decreasing Precision as m increases. Let
Pm be the precision of the classifier for arbitrary m and
Pm+1 be the precision of the classifier after including the
(m + 1)th positive training sample. Further let Ps be the
sample precision of the (m + 1)th sample. Given their re-
spective false positive (FP ) and true positive (TP ) counts
we can compute the precision of new classifier with m + 1
samples as:

Pm+1 =
TPm + TPs

TPm + TPs + FPm + FPs

. (5)

We therefore need to show that Pm ≥ Pm+1, that is:

TPm

TPm + FPm

≥
TPm + TPs

TPm + TPs + FPm + FPs

, (6)

which (by cross multiplication) is equivalent to the condition

TPm ∗ FPs ≥ TPs ∗ FPm. (7)

When the quality-of-approximation (Definition 1) hold per-
fectly, we have Pm ≥ Ps, which implies

TPm

TPm + FPm

≥
TPs

TPs + FPs

⇐⇒ TPm ∗ FPs ≥ TPs ∗ FPm, (8)

satisfying the requirement of equation 7.

Theorem 2: Decreasing Specificity as m increases. As
with precision, maximizing specificity (true negative rate),
is important for a classifier that is to be used in the genera-
tion of procedural content. We note that specificity and pre-
cision can be jointly optimized via the elimination of false
positives. Formally, specificity is defined as

TN/(TN + FP ), (9)

where TN represents the true negatives and FP the false
positives of a classifier. To show we have decreasing speci-
ficity over m, it suffices to observe that increasing m only
adds positive training samples to the classifier. As a result,
the negative decision region of a neighbor-based classifier
cannot increase, and the positive decision region cannot de-
crease. Thus, false positives are increasing and true nega-
tives decreasing, constraining specificity to decrease. No-
tably, this property is independent of the order in which the
positive samples are added.

Theorem 3: Increasing Variety as m increases. The sup-
porting argument for increasing variety over m is already es-
tablished in Theorem 2; since adding positive samples con-
strains the positive decision region to increase, by definition
the variety of the classifier will also increase. This property
is also independent of the positive samples’ order of inclu-
sion.

Results & Analysis

Behavior of m. To observe the impact of m on classifica-
tion, we estimate precision and variety over different values
of m on a synthetic dataset with a circular ground truth de-
cision boundary. This allows precision to be computed with
arbitrary accuracy by sufficiently sampling the feature space
and testing them on the classifier. Similarly, variety can be
estimated by sampling in the feature space and measuring
the positive classification rate. Figure 5 shows our results
using the KNN classifier: for small m, the precision of the
model remains high, but results in a classifier that produces
little variety when sampled. Conversely, for large m, a larger
variety of points can be generated, at the cost of precision.
Thus, m allows us to tune the precision/variety trade-off in
the learning process. This curve exhibits the expected mono-
tonicity for this type of classifier.

The curve produced by varying m resembles the ROC
curves used to indicate the performance of binary classifiers.
Just as ROC curves report the interplay between two con-
flicting goals of interest (true positive rate and false positive
rate), our PVL curves report the performance of a binary
classifier in terms of two other conflicting goals relevant to
the task at hand.

Comparing Classifiers As our PVL heuristic supports
multiple classification techniques, we compare several al-
gorithms in terms of their precision and specificity over m.
Specificity-variety curves for the different classifiers on our
real-world data with four classes are shown in Figure 6. As
in Figure 5, each curve exhibits increasing m from left to
right, with the exception of the Partial and Slight classes for
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